An episode of Nova I watched because it was 1. in HD and 2. Geoscience related. As unfortunately usual, another earth science Nova with excessive overdramatization. Like an earlier episode about the scablands of eastern Washington, the dramatics overwhelm any science presented. The research wasn't really explained until near the end, when they finally mentioned WHY volcanologists were going after fresh lava. Let's balance the danger/people/adventure aspect with more science. That's what Nova was for, wasn't it? Scientific American Frontiers does a much better job explaining science and what scientists do. Nova always had a bit of the National Geographic travelogue in it, but it's gone way too much to that now.
"Constant observation is necessary, for when it erupts, a new name could be added to the most deadly disasters in human history....Nyiragongo!"
Monday, November 07, 2005
Wednesday, November 02, 2005
United colors of plutonium
Plutonium, like a lot of the other transition metals, has a number of oxidation states and all of them are colorful. The valence ranges from +3 to +7, with +4 being the most common state.

This image was provided through Los Alamos or Lawrence Livermore National Laboratories; Wikipedia claims it's from LLNL but LANL uses it on a page at their site. The four colors on the right are the +4 valence forming different complexes with different anions.
I edited the image and concatenated the colors together for a palette. It looks like some sort of bad hotel color scheme.

P.S. There is some discussion of the first separation of plutonium here: http://chemcases.com/2003version/nuclear/nc-04.htm
This image was provided through Los Alamos or Lawrence Livermore National Laboratories; Wikipedia claims it's from LLNL but LANL uses it on a page at their site. The four colors on the right are the +4 valence forming different complexes with different anions.
I edited the image and concatenated the colors together for a palette. It looks like some sort of bad hotel color scheme.
P.S. There is some discussion of the first separation of plutonium here: http://chemcases.com/2003version/nuclear/nc-04.htm
Monday, October 31, 2005
Two new satellites of Pluto/Charon!
http://www.boulder.swri.edu/plutonews/.
Once again, Minor Planet Mailing List has the scoop. Two ~100km bodies orbiting in the same plane as Charon and at 23rd magnitude found via the Hubble Space Telescope. Good thing we haven't dumped it in the ocean yet.
IAU official announcement

This image from Alan Stern (SwRI), Hal Weaver (JHU APL), Max Mutchler (STScI), Andrew Steffl (SwRI), Bill Merline (SwRI), Marc Buie (Lowell Observatory), John Spencer (SwRI), Eliot Young (SwRI), and Leslie Young (SwRI).
Once again, Minor Planet Mailing List has the scoop. Two ~100km bodies orbiting in the same plane as Charon and at 23rd magnitude found via the Hubble Space Telescope. Good thing we haven't dumped it in the ocean yet.
IAU official announcement
This image from Alan Stern (SwRI), Hal Weaver (JHU APL), Max Mutchler (STScI), Andrew Steffl (SwRI), Bill Merline (SwRI), Marc Buie (Lowell Observatory), John Spencer (SwRI), Eliot Young (SwRI), and Leslie Young (SwRI).
Wednesday, October 26, 2005
Faulty logic
Is lithium safe for the environment?
Yes. Much of the concern with the environment centers on heavy metals.
Lithium is the lightest metal known.
Content-light, I know, I'm working on something.
Monday, October 24, 2005
Monday, October 17, 2005
LA Times on 2003 UB313
"Ortiz's boss, astronomer Jose Carlos del Toro Iniesta, concedes that those rights will most likely be awarded to Brown.
"I think there is no longer a debate," he said in an e-mail message to The Times. "Dr. Ortiz acknowledges that Brown's team spotted the object in their archives prior to him.""
http://www.latimes.com/news/local/la-me-planet16oct16,1,3949603,full.story
"I think there is no longer a debate," he said in an e-mail message to The Times. "Dr. Ortiz acknowledges that Brown's team spotted the object in their archives prior to him.""
http://www.latimes.com/news/local/la-me-planet16oct16,1,3949603,full.story
Saturday, October 15, 2005
Linne statue in the near infrared
I took this photo over the summer. The Linne statue is on the Midway on the University of Chicago campus and to the eye is covered in a light greenish patina but goes quite dark in the near infrared.
P.S. One thing I forgot to mention is that I changed the hue so that the vegetation is green and the sky is blue. Another one like that is here. Also I corrected the incorrect link to the big Linne image.
Thursday, October 13, 2005
ABC Primetime: Radioactive Road Trip
What a piece of alarmist drivel. ABC Primetime "exposed" the security of university teaching and research reactors.
"Oh my god! Tours of reactors without background checks!"
"40kg of highly-enriched weapons-grade uranium in the reactor--without security!"
It might be 40kg, but it's sitting in rods with so highly radioactive nuclides it would kill them in a second. No one could handle it at all, and could never actually process it to get the uranium out.
"Big backpacks on campus--they could be full of books--I mean bombs!"
"Building plans on-line! of buildings on campus!" Wouldn't want students to find where their classes were or anything.
"Two nuclear bombs worth of uranium--to make topazes more blue." Yes, again, completely untouchable uranium.
Yes, journalism students looking like, I don't know, students, got tours of university facilities. God forbid!
Universities are places far removed from the insanity that is the paranoia filled United States of today. They allow for actual learning free from irrational thought.
MIT got boned because ABC drove a moving truck near the containment vessel and then followed the clip with a shot of the Oklahama City Bombing. It's a frickin' containment vessel made of inches thick steel and feet of concrete. It can't be broken.
Did ABC show ANY ANY nuclear engineers on camera? Just the NRC head, who knew how to deal with media--apologize and promise to tighten things up. Ask an engineer about a reactor and learn about the safety features. You can't get bomb material from a reactor without industrial processes. Ask the US Government on the square miles of buildings they used to extract plutonium at Hanford.
"Oh my god! Tours of reactors without background checks!"
"40kg of highly-enriched weapons-grade uranium in the reactor--without security!"
It might be 40kg, but it's sitting in rods with so highly radioactive nuclides it would kill them in a second. No one could handle it at all, and could never actually process it to get the uranium out.
"Big backpacks on campus--they could be full of books--I mean bombs!"
"Building plans on-line! of buildings on campus!" Wouldn't want students to find where their classes were or anything.
"Two nuclear bombs worth of uranium--to make topazes more blue." Yes, again, completely untouchable uranium.
Yes, journalism students looking like, I don't know, students, got tours of university facilities. God forbid!
Universities are places far removed from the insanity that is the paranoia filled United States of today. They allow for actual learning free from irrational thought.
MIT got boned because ABC drove a moving truck near the containment vessel and then followed the clip with a shot of the Oklahama City Bombing. It's a frickin' containment vessel made of inches thick steel and feet of concrete. It can't be broken.
Did ABC show ANY ANY nuclear engineers on camera? Just the NRC head, who knew how to deal with media--apologize and promise to tighten things up. Ask an engineer about a reactor and learn about the safety features. You can't get bomb material from a reactor without industrial processes. Ask the US Government on the square miles of buildings they used to extract plutonium at Hanford.
Tuesday, October 11, 2005
Chinese Space Launch this week
The Chinese are planning on launching a manned space mission this week.
Photo from
Xinhua.
Xinhua report.
BBC report
Xinhua.
Xinhua report.
BBC report
Sunday, October 09, 2005
NYTimes Article: How the City Sank excerpt
How the City Sank
"The pump operator's story reflects a spirit of civic responsibility that rallied in humble quarters like these when Hurricane Katrina roared through the Gulf Coast, soon to be followed by Hurricane Rita. At the same time, it illustrates the degree to which the once-solid foundations of that system have become an illusion. For decades now, we have been witnessing the slow, ruthless dismantling of the nation's urban infrastructure. The crumbling levees in New Orleans are only the most conspicuous evidence of this decline: it's evident everywhere, from Amtrak's aging track system to New York's decaying public school buildings.
Rather than confront the causes of that deterioration, we are encouraged to overlook it, lost in a cloud of tourist distractions like casinos, convention centers, spruced-up historic quarters and festival marketplaces.
The inadequacy of that vision has now become glaringly obvious. And the problem cannot simply be repaired with reinforcement bars or dabs of cement. Instead, our decision makers will have to face up to what our cities have become, and why.
The great American cities of the early 20th century were built on the vision of its engineers, not just architects. That spirit can be found in the aqueduct that William Mulholland built in the 1910's, transforming the parched Los Angeles desert into a sprawling urban oasis. And it paved the way for the soaring skylines of Chicago and Manhattan architects."
"The pump operator's story reflects a spirit of civic responsibility that rallied in humble quarters like these when Hurricane Katrina roared through the Gulf Coast, soon to be followed by Hurricane Rita. At the same time, it illustrates the degree to which the once-solid foundations of that system have become an illusion. For decades now, we have been witnessing the slow, ruthless dismantling of the nation's urban infrastructure. The crumbling levees in New Orleans are only the most conspicuous evidence of this decline: it's evident everywhere, from Amtrak's aging track system to New York's decaying public school buildings.
Rather than confront the causes of that deterioration, we are encouraged to overlook it, lost in a cloud of tourist distractions like casinos, convention centers, spruced-up historic quarters and festival marketplaces.
The inadequacy of that vision has now become glaringly obvious. And the problem cannot simply be repaired with reinforcement bars or dabs of cement. Instead, our decision makers will have to face up to what our cities have become, and why.
The great American cities of the early 20th century were built on the vision of its engineers, not just architects. That spirit can be found in the aqueduct that William Mulholland built in the 1910's, transforming the parched Los Angeles desert into a sprawling urban oasis. And it paved the way for the soaring skylines of Chicago and Manhattan architects."
Sunday, October 02, 2005
2003 UB313 has a satellite
Oh boy! Brown using Keck and the adaptive optics there managed to detect an object moving in the same direction as 2003 UB313 and about a half an arcsecond away. When further observations are made and a period found for the satellite, the mass of the parent body will be known! MPML for a forwarded announcement or all the press stories.
The Keck 10m scope can easily beat the resolution of the Hubble Space Telescope when it is using the adaptive optics system, but it only beats Hubble over a very small patch of the sky at a time. It's great for looking at singular near point-source objects.
How does knowing a moon's orbit give you the mass of the parent? Here is what you know: You know the angular distance between the moon and the parent, which gives you the actual distance away from the planet, since you also know the distance to the planet from the Earth. Using Newton's formula of F=G*M1*M2/R^2, and that the apparent centripetal force for the moon is F=M2v^2/R, the two forces are equal, so you get that the velocity is equal to the square root of (G*M1/R).
The period is equal to 2pi*R/v.
So, the period is equal to 2pi*R/(square root of (G * M1/R).
Or you can say the Mass of the planet is equal to 4pi * R^3/G * T2. I think. Okay, I went back and checked some sites, and my derivation looks correct. This site has a good look at it.
The Keck 10m scope can easily beat the resolution of the Hubble Space Telescope when it is using the adaptive optics system, but it only beats Hubble over a very small patch of the sky at a time. It's great for looking at singular near point-source objects.
How does knowing a moon's orbit give you the mass of the parent? Here is what you know: You know the angular distance between the moon and the parent, which gives you the actual distance away from the planet, since you also know the distance to the planet from the Earth. Using Newton's formula of F=G*M1*M2/R^2, and that the apparent centripetal force for the moon is F=M2v^2/R, the two forces are equal, so you get that the velocity is equal to the square root of (G*M1/R).
The period is equal to 2pi*R/v.
So, the period is equal to 2pi*R/(square root of (G * M1/R).
Or you can say the Mass of the planet is equal to 4pi * R^3/G * T2. I think. Okay, I went back and checked some sites, and my derivation looks correct. This site has a good look at it.
Wednesday, September 28, 2005
Dumbbell Nebula Messier 27 from last night
I took a quick set of shots of Messier 27, a planetary nebula, last night from Ryerson, after fixing a piece of equipment on the telescope. This is 128 images of 15 seconds added together to make a 32 minute equivalent exposure.
Wednesday, September 21, 2005
Cajon Pass
Have you ever driven from Las Vegas to Los Angeles? Two thirds of the way there, you are driving along I-15 in the high, dry Mojave Desert at 3,000 to 4,000 ft, and suddenly you begin a steep curving descent, reaching very high speeds, hoping to retain control of your car. The topography is tortured with impossibly steep mountains and hills running across your path, but... you look far below and see a large wash cutting a path through the mess, and that is what the freeway follows. You see that the freight trains too run through this steep canyon. If you knew a little more, you'd also know that all the infrastructure for gas and oil to Las Vegas runs through here too. A few minutes of this wild driving and then you are dumped out into a low plain; it's cooler, more humid; the coastal air is tinged with both Pacific moisture and the exhaust of 15 million cars.
The drop, the canyon you pass through, is Cajon Pass. It is a critical transportation, infrastructure, and drainage corridor. It is also entirely a creation of the San Andreas Fault.
On your left side as you head towards L.A. are the San Bernardino Mountains. On your right, and more impressive in appearance, are the San Gabriels. They, and some other ranges to the west, constitute the Transverse Ranges, a east-west set of ranges. They are really one mountain range, formed from the compression along a kink in the San Andreas slip-strike fault. The motion of the Pacific plate, normally slipping smoothly, rides hard against the North American Plate at this location, compressing the land up into an unstable, steep, untenable range.
Why there is a usuable (although steep) pass right in the middle of the mountains can't be ascribed to luck--the San Andreas Fault runs NW-SE right through the pass. You can see a diagram of this from here: http://www.laep.org/target/fragile_habitats/images/mtns_calif.gif (The link was down today but it's been up before).
Also, I've annotated a TERRA image of Southern California:

The full image showing the whole region is here:

This is a nice block diagram showing the region from the USGS.
Imagine sliding the left side of the satellite image down and to the right, and now the San Gabriels and San Bernandinos line up.
Not only does the fault create the range, it also slices the range up.
University of Chicago and Hyde Park types will be amused by the roads in the small settlement near the base of the canyon. Google Hybrid link.
Another point of interest is the strongest plume of sediment you can see in the ocean. The Cajon Pass drains through a convoluted path of washes, creeks, and dams to the sea right there. Is some of that silt from the rapidly eroding rocks of the Pass? Absolutely.
I originally started writing this entry in August, trying to start out with a broad comment about how geology completely controls topography. I am amazed at how every geographic and topographic structure can be explained geologically. That approach to the entry didn't work, so instead I wrote about a specific instance. And what's amazing is I am finding these explanations everywhere.
The drop, the canyon you pass through, is Cajon Pass. It is a critical transportation, infrastructure, and drainage corridor. It is also entirely a creation of the San Andreas Fault.
On your left side as you head towards L.A. are the San Bernardino Mountains. On your right, and more impressive in appearance, are the San Gabriels. They, and some other ranges to the west, constitute the Transverse Ranges, a east-west set of ranges. They are really one mountain range, formed from the compression along a kink in the San Andreas slip-strike fault. The motion of the Pacific plate, normally slipping smoothly, rides hard against the North American Plate at this location, compressing the land up into an unstable, steep, untenable range.
Why there is a usuable (although steep) pass right in the middle of the mountains can't be ascribed to luck--the San Andreas Fault runs NW-SE right through the pass. You can see a diagram of this from here: http://www.laep.org/target/fragile_habitats/images/mtns_calif.gif (The link was down today but it's been up before).
Also, I've annotated a TERRA image of Southern California:
The full image showing the whole region is here:
This is a nice block diagram showing the region from the USGS.
Imagine sliding the left side of the satellite image down and to the right, and now the San Gabriels and San Bernandinos line up.
Not only does the fault create the range, it also slices the range up.
University of Chicago and Hyde Park types will be amused by the roads in the small settlement near the base of the canyon. Google Hybrid link.
Another point of interest is the strongest plume of sediment you can see in the ocean. The Cajon Pass drains through a convoluted path of washes, creeks, and dams to the sea right there. Is some of that silt from the rapidly eroding rocks of the Pass? Absolutely.
I originally started writing this entry in August, trying to start out with a broad comment about how geology completely controls topography. I am amazed at how every geographic and topographic structure can be explained geologically. That approach to the entry didn't work, so instead I wrote about a specific instance. And what's amazing is I am finding these explanations everywhere.
Thursday, September 15, 2005
Ortiz response
This was posted on the Minor Planet Mailing List by Ladislav Nemec.
Michael Brown wrote up his page about the issue here.
Reiner Stoss forwarded Brian Marsden's CCNet post about the issue to the MPML as well; it is available here for the moment.
Hello MPML,
Jose Luis Ortiz of Sierra Nevada Observatory asked me
to forward his letter.
-----------------------------------------------------
Hello MPML, I provide you this information which will
go to my webpage in the next days. The detailed timeline
of our find was given to Daniel Green, director of CBAT long
before any controversy. Anyone can ask him and check against
any other timings of events provided by M. Brown. I suppose
that this has been done by the pertinent authorities and
that is why no official request on anything has been sent to
us by the International Astronomical Union (IAU).
Here I will repeat the timeline of events and even expand
some details:
The analysis of most of our 2003 survey images had been
postponed several times because they had a different optical
configuration to the current one and many images had problems,
so only this year did we begin processing them.
On Monday July 25th the object is found in some of our
March 2003 triplet images. We do all possible checks to discard
image artefacts being the cause and to make sure it is not a
false positive. We had had false positives in the past so we
were very careful. We realized that the object was very bright
and could be the same one mentioned in a DPS abstract web page.
A regular google internet search on K40506A leads to a public
internet web page with what appears to be coordinates of many
things. This is no hacking or access to private information nor
spying of any sort. Some of the coordinates shown in those pages
are not very far from ours despite the several years difference
so the object could be the same one but we cannot really tell as
we are not dynamicists and we decided to submit the astrometry
to the Minor Planet Center (MPC) because the MPC is to make such
things.
On Wednesday 27th a report with our 3-day 2003 astrometry is
sent to the MPC with the subject "possible new object" as we
were not sure if it could be new or not. MPC reports have a very
short and specific format and are not regular scientific publications.
Astrometry of known or unknown objects is regularly submitted by
many of us to MPC and as I said they are not peer-reviewed
publications and have no references or bibliography sections,
but even if we had that option there was no possible reference to
give as K40506A was nothing standard and it was not even sure that
it was K40506A.
Apparently this report went unnoticed to the MPC and since we did
not get a response, the next day we seek help of OAM people for
precovery (that is, to try to find the object in publicly available
image archives on the internet) as we had no experience on this.
This requires orbital computations for which we do not have expertise.
R. Stoss was particularly helpful as a reputed person in precoveries.
The description of the process is very technical but I reproduce
it here anyway, quoting parts of his own words to the minor planet
mailing list.
------
The initial orbit based on the three positions from 2003 was a
crap, even retrograde if I remember well, but it was good enough
to find it on NEAT data from few days later. This way the orbit
was improved iteratively, the prediction improved, new frames
found etc. until the NEAT archive was plundered. The next step
then is to go to DSS, until back to POSS I. From all the 1-opp
TNO precoveries I had done so far, this one was a no-brainer.
The object was very bright and the "stepstones" were perfect,
i.e. the frames and plates were perfectly "timed". Thus DSS2
and 1 were plundered and some POSS I non-DSS plates as well and
both NEAT and DSS data submitted.
Additionally, as it was getting dark in Spain and weather was
clear in Mallorca, I opened over internet the 30-cm scope and
started to prepare it for the night, looking We had to start
before the end of nautical twilight because the object would set
behind the shelter soon. We did 30 images of 30s each and stacked
with Astrometrica in sets of 10 images to get three measurements.
Motion could not be seen visually but the numbers showed it moving
and in the right direction. So I decided we should report these
three data points instead of stacking all 30 images to get one
data point. One data point would have been better (better SNR etc.)
but I know the MPC folks and their pretentions
------
As a result of all of this the provisional designation of the
object was assigned to our 2003 images, but Brown's group received
credit through several means. It is evident that they spotted it
first, but did not report it to the MPC so the provisional
designation came to our images.
We have been studying physical properties of large Trans Neptunian
Objects for several years and have published more than 10 scientific
peer-reviewed papers on them, so we are driven by purely scientific
goals here. We conduct also our own survey since late 2002 in order
to find a few very large TNOs and report them to the astronomical
community as soon as we find and confirm them because we believe that
international scientists working together, collaborating and sharing
resources can boost science progress and do the best possible job.
In other words, our survey is not only to feed our work, but also to
provide the scientific community with objects that can soon be
studied by the international community with all its man and
technology power.
Jose L. Ortiz
Michael Brown wrote up his page about the issue here.
Reiner Stoss forwarded Brian Marsden's CCNet post about the issue to the MPML as well; it is available here for the moment.
Hello MPML,
Jose Luis Ortiz of Sierra Nevada Observatory asked me
to forward his letter.
-----------------------------------------------------
Hello MPML, I provide you this information which will
go to my webpage in the next days. The detailed timeline
of our find was given to Daniel Green, director of CBAT long
before any controversy. Anyone can ask him and check against
any other timings of events provided by M. Brown. I suppose
that this has been done by the pertinent authorities and
that is why no official request on anything has been sent to
us by the International Astronomical Union (IAU).
Here I will repeat the timeline of events and even expand
some details:
The analysis of most of our 2003 survey images had been
postponed several times because they had a different optical
configuration to the current one and many images had problems,
so only this year did we begin processing them.
On Monday July 25th the object is found in some of our
March 2003 triplet images. We do all possible checks to discard
image artefacts being the cause and to make sure it is not a
false positive. We had had false positives in the past so we
were very careful. We realized that the object was very bright
and could be the same one mentioned in a DPS abstract web page.
A regular google internet search on K40506A leads to a public
internet web page with what appears to be coordinates of many
things. This is no hacking or access to private information nor
spying of any sort. Some of the coordinates shown in those pages
are not very far from ours despite the several years difference
so the object could be the same one but we cannot really tell as
we are not dynamicists and we decided to submit the astrometry
to the Minor Planet Center (MPC) because the MPC is to make such
things.
On Wednesday 27th a report with our 3-day 2003 astrometry is
sent to the MPC with the subject "possible new object" as we
were not sure if it could be new or not. MPC reports have a very
short and specific format and are not regular scientific publications.
Astrometry of known or unknown objects is regularly submitted by
many of us to MPC and as I said they are not peer-reviewed
publications and have no references or bibliography sections,
but even if we had that option there was no possible reference to
give as K40506A was nothing standard and it was not even sure that
it was K40506A.
Apparently this report went unnoticed to the MPC and since we did
not get a response, the next day we seek help of OAM people for
precovery (that is, to try to find the object in publicly available
image archives on the internet) as we had no experience on this.
This requires orbital computations for which we do not have expertise.
R. Stoss was particularly helpful as a reputed person in precoveries.
The description of the process is very technical but I reproduce
it here anyway, quoting parts of his own words to the minor planet
mailing list.
------
The initial orbit based on the three positions from 2003 was a
crap, even retrograde if I remember well, but it was good enough
to find it on NEAT data from few days later. This way the orbit
was improved iteratively, the prediction improved, new frames
found etc. until the NEAT archive was plundered. The next step
then is to go to DSS, until back to POSS I. From all the 1-opp
TNO precoveries I had done so far, this one was a no-brainer.
The object was very bright and the "stepstones" were perfect,
i.e. the frames and plates were perfectly "timed". Thus DSS2
and 1 were plundered and some POSS I non-DSS plates as well and
both NEAT and DSS data submitted.
Additionally, as it was getting dark in Spain and weather was
clear in Mallorca, I opened over internet the 30-cm scope and
started to prepare it for the night, looking We had to start
before the end of nautical twilight because the object would set
behind the shelter soon. We did 30 images of 30s each and stacked
with Astrometrica in sets of 10 images to get three measurements.
Motion could not be seen visually but the numbers showed it moving
and in the right direction. So I decided we should report these
three data points instead of stacking all 30 images to get one
data point. One data point would have been better (better SNR etc.)
but I know the MPC folks and their pretentions
------
As a result of all of this the provisional designation of the
object was assigned to our 2003 images, but Brown's group received
credit through several means. It is evident that they spotted it
first, but did not report it to the MPC so the provisional
designation came to our images.
We have been studying physical properties of large Trans Neptunian
Objects for several years and have published more than 10 scientific
peer-reviewed papers on them, so we are driven by purely scientific
goals here. We conduct also our own survey since late 2002 in order
to find a few very large TNOs and report them to the astronomical
community as soon as we find and confirm them because we believe that
international scientists working together, collaborating and sharing
resources can boost science progress and do the best possible job.
In other words, our survey is not only to feed our work, but also to
provide the scientific community with objects that can soon be
studied by the international community with all its man and
technology power.
Jose L. Ortiz
Tuesday, September 13, 2005
Subscribe to:
Posts (Atom)